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A A REPRESENTATION FOR SPHERICALLY INVARIANT RANDOM PROCESSES

el

3 - G.L. WISE

5 QO Department of Electrical Engineering

‘“& University of Texas at Austin

. m Austin, Texas 78712 D D C
1 I MEEETLIE
a N.C. GALLAGHER, IR. J _

b o) School of Electrical Engineering FEB 9 {917
& Purdue University

N CD West Lafayette, Indiana 47907 IEEEUU‘E
a ABSTRACT

L < It is shown that a random process is spherically invariant if and only if it

: is equivalent to a zero mean Gaussian process multiplied by an independent
random variable., Several properties of spherically invariant random processes
follow in a simple and direct fashion from this representation.

AL L R A L £

il INTRODUCTION

Spherically invariant random processes (SIRP's) were introduced by Vershik
(1] when he was investigating a class of random processes which shared some
properties characteristic of Gaussian processes. In particular, he found that, .
for second order SIRP's, all mean square estimation problems have linear
solutions, and this class of processes is closed under linear operations. In
; an interesting paper, Blake and Thomas [2] explored some important properties
| of SIRP's. Then, in a recent paper [3] Yao presented some very significant
: results concerning SIRP's. In particular, he presented a representation
el ; theorem for the family of finite dimensional distributions of SIRP's, The ref-
_él . erences in [3] provide a summary of other work done in this area.
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By the well-known theorem of Kolmogorov [4; 5, pp.32-37], the consistent
and symmetric family of all finite dimensional distributions of a random
process is necessary and sufficient to give a statistical characterization of
the process (i.e. to uniquely define the probability distribution in the sample
function space for all Borel sets of the sample function space). In practice,
few processes are characterized in this way; the major difficulty being the
mathematical intractability of general n dimensional distributions. However,
a SIRP can be conveniently characterized in terms of its family of finite
dimensional distributions (see [2] and [3]). In this paper we will develop a
representation theorem for SIRP's by using the family of finite dimensional
distributions of a SIRP. It will be shown that, loosely speaking, at the heart
of any SIRP is a Gaussian process. This will enable us to extend many results
known for Gaussian processes to SIRP's.
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DEVELOPMENT

We will say that a random process is singular if one random variable in
the process can be written as a finite linear combination of the other random
’ variables in the process. It will be seen later in this paper that (except for
the identically zero process) the case considered by Yao is the nonsingular
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case. Thus the class considered by Yao does not include all Gaussian
processes. Vershik, on the other hand, as well as Blake and Thomas, con-
sidered only second order SIRP's. We will impose neither the second order
property nor the nonsingularity property.

For our purposes, a centered SIRP will be defined as a random process
whose n-th order characteristic function i1s a function of an n-th order non
negative definite quadratic form. If the mean exists, then the centering is
easily seen to be equivalent to having a zero mean (i.e. use differentiation
of the characteristic function). In the sequel it will be assumed that all
SIRP's are centered. In Yao's work, the SIRP's were taken to be those whose
n~-th order characteristic function was a function of an n-th order positive
definite cquadratic form,

Let C denote the collection of all classes of consistent finite order
characteristic functions of SIRP's whose n-th order characteristic function
is a function of an n-th order positive definite quadratic form. Obviously,
not just any function of the quadratic form will work., Let u  represent an
n dimensional row vector. Let Rn denote an nxn positive definite matrix,

Let a prime denote the transpose. The following theorem is due to Yao [3].

Theorem l: A necessary and sufficient condition for the class of characteristic
functions

{wn(un) = *n(uanu;) rn2l]

to be inC is that

0 =40 = | exp(-3-1v2 ) dF(v) |

where F(*) s a probability distribution function supported on the non negative
half line.

This theorem can be extended to include the singular case in the following
straightforward manner. Consider a singular SIRP. Select N random variables

from this process. Denote them by the row vector XN. Assume that this set

of random variables is singular. Let Xr denote the row vector of dimension r

such that each random variable in Xr is alsoin X_., Xr is nonsingular, and

N
XN= XrA , where A is an rxN transformation matrix. Then from Theorem |, we

know that the characteristic function of Xr , denoted by L _:/
ay Senipr
C (u) = E{exp{iu X’ )] Wit Seeliae 17
rr r'r
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is given by P — 3
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4 Cr(ur) Io exp ( 5 urRrur)dF(V)
‘ where Rr is some positive definite rxr matrix and F(+) is some probability dis~-
tribution function supported on the non negative half line. The characteristic %
= function of X, 1s given by %
N 2
9 &
3 Cyluy! = Elexplu X} 4
1 X
3 = Efexp(l uy A Xr)) .
E 8 i
i,‘ = ! i
g © Z "
= | exp(- ARAu dr(v

3 jo pl- 5 uy L VAF(Y)

‘ Thus we see that the characteristic function of XN is a function of a non

g | ‘ negative definite quadratic form.

i Conversely, consider the class of characteristic functions

“‘ {cp (u)-I exp(--Y-?u R _u')dF(v) n>1}

| 2 nnn teZ

b where En is an nxn non negative definite matrix. It is readily seen that this

e

o is the class of characteristic functions of a random process which can be

%3 : represented as a Gaussian random process, with zero mean and covariance

matrix En’ multiplied by a random variable whose probability distribution

éf

‘ function is given by F(+). Thus it follows from Kolmogorov's theorem that

; this class of characteristic functions is consistent., Also, from the definition

of SIRP's, it follows that the corresponding random process is spherically

o invariant,

3 —~

‘ Let C denote the collection of all classes of consistent finite order char-

acteristic functions of SIRP's. Then we have the following extension of

o) Theorem 1.

b4

Eer”

Theorem 2: Theorem | is true if C is replaced bya and Rn is replaced by R_.

oA It follows from Theorem 2 and Kolmogorov's theorem that a random process
a2 is a SIRP if and only if it is of the form AY(t), where A is a random variable
whose distribution function is supported on the non negative half line and
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Y(t) is a zero mean Gaussian process independent of A, Consider, for the
moment, the case where the distribution function of A is not necessarily
supported on the non negative half line. The n-th order characteristic
function of any n random variables in the process is of the form

© 2 -
C (u) = I exp(--‘;—uanut;)dF(v) ,

nn
-

where En is the covariance matrix of the n mutually Gaussian random variables

Y(tl)' oo Y(tn). It is readily seen that this integral can be expressed as

o 2 _
c (u) = jo expl- -‘-’2— u R u')dF(v),

where 'f"(-) is a distribution function supported on tr}g non negative half line.
That is, if F is the distribution function of A, then F is the distribution function
of |[A|. In other words, the random processes AY(t) and |A|Y(t) have the seme
family of finite dimensional distributions. We summarize these results in the
following representation theorem for SIRP's.

Theorem 3: A random process is a spherically invariant random process if and
only if it is equivalent to a random process of the form AY(t), where A is an
arbitrary random variable and Y(t) is a zero mean Gaussian process indepen-
dent of A,

Theorem 3 characterizes SIRP's as zero mean Gaussian processes with
random amplitudes. It is readily seen that a SIRP is Gaussian if and only if
F(*) is atomic with only one atom (i.e. A is a constant).

In the sequel we will exclude the identically zero process from consider~
ation. Consider the n-th order characteristic function associated with a
SIRP. It follows in a straightforward fashion that the non negative definite
matrix Rn in the quadratic form is the covariance matrix associated with the

underlying Gaussian random variables, given in Theorem 3. If this matrix

is positive definite, then it follows that the corresponding n Gaussian random
variables are nonsingular., From this it follows that the n random variables
from the SIRP are also nonsingular. In the case considered by Yao [3], Rn

was positive definite for all n, Thus he considered nonsingular SIRP's.
Conversely, if n random variables from a SIRP are singular, then the corres-
ponding Gaussian random varlables are singular, and thus the corresponding
covariance matrix is not positive definite,

It 1s well known [1] that if a SIRP is ergodic, then it is a Gaussian
process. Theorem 3 provides a simple illustration of this fact; that is, one
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sample function will not yield any information concerning the statistics of the
random amplitude, and the amplitude is nonrandom if and only if the process
is Gaussian.

Theorem 3 also provides a simple {llustration of the fact [1] that a
(deterministic) linear transformation of a SIRP results in a SIRP.

Theorem 3 furnishes a convenient method for studying the sample function
B properties of SIRP's. Sample function properties of Gaussian processes have
% been widely studied (see, for example, [5, Chapters 9-13]). We will con~

: sider a few special cases of interest, and we will state the results in terms
of SIRP's. In the sequel, the zero mean SIRP X(t) will be assumed to be
separable, stationary, second order, and mean square continuous. Also,

we will assume that P{X(t) = 0} = 0., The next theorem follows from the work
of Dobrushin [6].

Theorem 4: Either

1. the sample functions of X(t) are continuous with probability one
j‘, or
- | 2. with probability one, the sample functions of X(t) have discontinuities
i ' of the second kind at every point.
: The following corollary is a result of the further work of Belyaev [7].
-
Corollary 1: If the sample functions of X(t) are not almost surely cc: tinuous,
2 then they are almost surely unbounded in any interval.
1
e |
3 The next theorem foliows from the work of Hunt [3].
2‘.
’ Theorem 5: Let S(w) denote the spectral distribution function of X(t). If
® .2
. J [log(1+wo] ds(w) < = ,
0

. for some a>1, then X(t) has continuous sample functions with probability
= one. Also, if

o -
A3 a 3

J o? [ log(l+w)]dS(w) < =, g
"j 0 2

;: ’-ﬂ,,
- for some a >1, then X(t) has continuous sample function derivatives with Z
s ' probability one. %
% ".3.«
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Theorem 6: Let R(t) denote the autocorrelation function of X(t). The expected
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The expected rate of zero crossings of a Gaussian random process has
been studied by many investigators. The following theorem is based on the
work of Ylvisaker [9].

number of zero crossings of X(t) in an interval of length T is given by

m | R(0)

if R(7) has a finite second derivative at the origin. If R(t) does not have a
finite second derivative at the origin, then the expected number of zero

crossings in any interval is infinite. '"
Now we will consider some common zero memory nonlinearities and we
will study their effects upon the second moment properties of X(t). ‘Represent
X(t) as |A|Y(t), where Y(t) is a Gaussian process independent of the random b
variable A. Also, take Y(t) to have unit variance. Let R(r) denote the auto- b
correlation function of X(t), and let p(r) denote the normalized autocorrelation '
function,
4

R 3

- (T) .”

p(r) R(0) ° ‘

Notice that p(r) is also the autocorrelation function of Y(t). ”:“
7

Let g) denote a hard limiter; that is,

l #fuz=0 e

9= tuco 3

“E i

It is clear that

RPN
I,
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Then it follows from the well known result for Gaussian processes [10, pp.280-
284] that

B
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E{gl[X(t+'r)] gl[X(t)]} = < arc sin p(7) .

Let 9, denote a half wave linear rectifier; that is
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Then we have

Elg,[X(t+)] g, X)) = E{Elg,lalvic+nlg,llalvwn a7} .

It follows from (10, pp.294-295] that

2 2
E[gz[|A|Y(t+'r)] gZ[IAlY(t)] |a} = %—1— p(r) + %— [p('r) arc sin p(r)

+ Jl-[pmlz] :

Therefore, we have that

Elg,[x(t +r)]g,ix(u]} = &2 4 KO [pm arc sin p(r) + /1= [p(r)}2 ]

Let 93 denote the square law device; that is,

= yl N
g3(u) = u . '{J'

Assume that the fourth moment of X(t) exists. From the well known result
for Gaussian processes [10, p.264], we have

E[ga[[A [y(t+)] g3[|A|Y(t)] [A} = A 2A4[p('r)]2 .

Then it follows that
2 2
E{gyX(t+)] g X1} = [RO)]” + 2(R(I” .
Notice that for each of the above three zero memory nonlinearities, the ;
transformation upon the second moment properties is exactly the same as for ,

a Gaussian process. This result is not true in general. For example,
consider Baum's limiter
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1 1 " v:2
g4(u) =3 +:ﬂ-=_1;j exp(—'—z—)dv .

We have [10, pp.298-302]

E{g,Llalylt+n)Ig,l]aly(m] |A} = 'zl;arc sin [AA +T1 ] .

Thus
E{g4[|A]Y(t+'r)]g4[Y(t)]} = -21-1;]‘ arc sin [%—%%L] dF(v) .
0
If
0, v<o
F(v) = I, vso .

then X(t) is a Gaussian process with autocorrelation ozp(-r), and the above
integral is equal to

_ZLE arc sin [g_g_(ﬁ] .

o+l
if
0, v<go/2
F(v) = { 0.8, 6/2gv<2 ,
I, vz2o

then X(t) is @ non-Gaassian SIRP with autocorrelation ozp(-r), and the above
integral is equal to

2 o plr) A 20 p(T)
o arc sin [o+2 ] + Tom arc sin [Zc+l ] .

Thus the transformation upon the second moment properties induced by Baum's

limiter when the input is a SIRP is not necessarily the same as when the
input is a Gaussian process.
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CONCLUSION

In this paper we have established a useful representation for SIRP's,
which is given in Theorem 3. This theorem was then employed to establish
several properties of SIRP's.

Consider a random process of the form AY(t), where Y(t) is a zero mean
Gausslan process and A is an independent random variable. It is easy to
show that such a random process is spherically invariant. However, the
essential result of Theorem 3 is that any SIRP can always be represented by
an equivalent random process having this form. This result {llustrates the
essential role played by Gaussian processes in the representation of SIRP's.
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